0=-16t^2+114

Simple and best practice solution for 0=-16t^2+114 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+114 equation:



0=-16t^2+114
We move all terms to the left:
0-(-16t^2+114)=0
We add all the numbers together, and all the variables
-(-16t^2+114)=0
We get rid of parentheses
16t^2-114=0
a = 16; b = 0; c = -114;
Δ = b2-4ac
Δ = 02-4·16·(-114)
Δ = 7296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7296}=\sqrt{64*114}=\sqrt{64}*\sqrt{114}=8\sqrt{114}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{114}}{2*16}=\frac{0-8\sqrt{114}}{32} =-\frac{8\sqrt{114}}{32} =-\frac{\sqrt{114}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{114}}{2*16}=\frac{0+8\sqrt{114}}{32} =\frac{8\sqrt{114}}{32} =\frac{\sqrt{114}}{4} $

See similar equations:

| X.2x/8=10 | | 11-12x=13x-14 | | 3z-1=13-4z | | q/4=7 | | 86=b+76 | | x=4+7/10 | | 6.0x25=x | | 10(12+7p)=10(4+10p)-10 | | X^2-6x+4=2x+4 | | 8j+2=58 | | 90=3t | | X.9.1+x=0.5x | | 7(n-9)-6(n-11)=9n-9n | | (4b-3)/3=7 | | 4b+23+23=4b | | 48b=36 | | 13+y=98 | | (5c+8)/2=24 | | 10a+30a+40=a2+6a+4 | | -6+3(p-12)=6(p+4) | | (b+9)/4=7 | | 2v^2+17v+42=(v+6)^2 | | (7x-4)/5=2 | | 22-3x=-70 | | 1.7+4.2n=-19.3 | | (x-5)/5=-4 | | -7x-5=−7x−5 | | 5x+5(1-x)=3x+8(1-x) | | 3x+6(1-x)=5x+4(1-x) | | (5+x)/2=12 | | 30m+44=99+25m | | 7(2a-3)=-3 |

Equations solver categories